INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES (p-ISSN: 2348-5213: e-ISSN: 2348-5221) www.ijcrcps.com

Coden: IJCROO(USA)

Volume 3, Issue 5 - 2016

Research Article

SOI: http://s-o-i.org/1.15/ijcrcps-2016-3-5-5

Synthesis, Spectral studies and Antimicrobial activity of Arsenic (III) Benzaldehyde Semicarbazone, Thiosemicarbazone and their Derivatives

Tripti Kamalpuria¹, Megha Chourey², Nameeta Bende³, Anish Ghuraiya⁴ Arpan Bhardwaj⁵

^{1,2,4,5}Department of Chemistry, Govt. Madhav Science P.G. College, Ujjain (M.P.), India E-mail: tripti_ujn@yahoo.co.in ³Department of Chemistry, Govt. Holkar Science College, Indore (M.P.), India

E-mail: namitabende@gmail.com

Abstract

The synthesis and spectral studies of the complexes of As(III) is reported in 1:2 with the general composition of (L)₂ AsCl (where L= Benzaldehyded semicarbazones and thiosemicarbazones) Complexes of Arsenic(III) with benzaldehyde semicarbazone, m-cyano benzaldehyde semicarbazone, o-nitro benzaldehyde semicarbazone, benzaldehyde thiosemicarbazone, m-cyano benzaldehyde thio semicarbazone and o-nitro benzaldehyde thiosemicarbazone have been synthesized and characterised by elemental analysis (C, H, N, Cl, S, O and As), molecular weight measurements and spectral studies(IR, ¹HNMR, ¹³CNMR). These complexes were also screened for their antibacterial and antifungal activities. The result reveal that the metal chelates are more potent than parent ligand.

Keywords: Semicarbazone, thiosemicarbazone, benzaldehyde, antimicrobial activity, ligand.

Introduction

The semicarbazones thiosemicarbazones and complexes have been stimulated by their biological activity ¹⁻³. These compounds present a great variety of biological activity such as antibacterial, antifungal, antiviral and antiinflamatory⁴⁻⁹. The transition metal complexes of both ligands have appeared in the literature¹⁰⁻¹⁴.But little is known about the complexing behaviour of Arsenic. Arsenic (III) tripyrazolinates and Arsenic (III) thiocarbamyls have been synthesized by the reaction of AsCl₃ with sodium salt of pyrazolinates and thiocarbamyls respectively and found greater activity of arsenic (III)tripyrazolenes and thiocarbamyls towards all tested bacteria and fungi than free ligand^{15,16} In Present communication we described the synthesis, spectral studies and antimicrobial activity of Arsenic (III) Benzaldehyde semicarbazone, thiosemicarbazone and their derivatives.

Experimental

Chemicals and Solvent used were dried and purifies by standard methods before use¹⁷. Moisture was excluded from the glass apparatus using CaCl₂. All the chemical used were of analytical grade. Arsenic trichloride has been prepared by the reaction of arsenic trioxide with thionyl chloride. Ligands were prepared by the reported procedure¹⁸.

Synthesis of Ligands

Synthesis of benzaldehyde semicarbazone:

0.1mol.(11.15g.) of semicarbazide hydrochloride and 0.1mol.(8.20g.) of crystaline sodium acetate were dissolve in required quantity of distilled water by warming and combine both solution in a beaker, then add 0.1mol. of corresponding benzaldehyde and shake

© 2016, IJCRCPS. All Rights Reserved

well on cooling yellow shiny solid separates out. Filtered and washed with cold water. It was recrystallised from ethanol.

Synthesis of benzaldehyde thiosemicarbazone:

To a hot solution of thiosemicarbazide (1.82gm., 20mmol) in 160 ml. methanol was added drop wise a solution of corresponding benzaldehyde (20mmol) in 70 ml. methanol during 30 minutes. The mixture was stirred and refluxed for 4 hrs. it was filtered and the filtrate was concentrated to half the volume under reduced pressure. After a slow evaporation of the concentrate at room temperature, crystals were collected by filtration, washed with cold ethanol and recrystallised from ethanol.

Chloroarsenic (III) benzaldehyde thiosemicarbazones

have been synthesized by the reaction of the solution

of arsenic trichloride in ethanol was added drop wise

benzaldehyde thiosemicarbazones in methanol, in 1:2

molar ratios. Sodium acetate in 3ml. of water then

added. The reaction mixture was refluxed for 2 hours

stirred solution of the corresponding

AsCl₃ + 2(R,ArC₂H₃N₃O)
$$\longrightarrow$$
 (R,ArC₂H₂N₃O)₂ AsCl + 2HCl

E-41

and stirred of 24 hours at room temperature, till the colour of the reaction mixture underwent a change. Reaction mixture was filtered. The solvent was removed under reduced pressure from the filtrate. The light yellow coloured solid thus obtained washed with alcohol and dried in vacuum to get the purified product. (Analytical data presented in Table1) compounds 4-6 prepared by the same route.

AsCl₃ + 2(R,ArC₂H₃N₃S)
$$\xrightarrow{\text{Ethanol}}$$
 (R,ArC₂H₂N₃S)₂ AsCl + 2HCl

Physical Measurements

to

а

Synthesis of (R,ArC₂H₂N₃S)₂ AsCl

Chlorine was estimated by volhards method and arsenic was estimated iodometrically¹⁹ Infrared spectra were recorded on Perkin Elmer Model 557 FT-IR spectrophotometer using CsI cell in the range 4000-200 cm⁻¹. NMR spectra were recorded at room

temperature on a Bruker DRX-300 spectrometer operated at 300 and 75.45 MHz for ¹H, ¹³C, using TMS (tetramethylsilane) as internal standard. Molecular weights were determined on a knauer vapour pressure in CHCl₃at 45⁰C²⁰. The elemental analysis(C, H and N) was estimated by coleman analyser

				M.W.	Ele	mental A	Analysis	s % (Ca	Iculated	l) Four	nd
S. No	Product	Yield %	M.P. ℃	(Calc) Found	С	Н	N	ο	S	CI	As
1	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	81	145	(434.7)	((44.21)	(3.71)	(19.33)	(7.36)	-	(8.16)	(17.23)
				433.8	44.36	3.55	19.51	7.24	-	8.61	16.73
2	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	80	180	(524.7)	(36.62)	(2.69)	(21.36)	(18.30)	-	(6.76)	(14.28)
				523.9	37.12	2.59	21.45	18.40	-	6.66	13.84
3	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	80	215	(484.7)	(44.60)	(2.91)	(23.12)	(6.60)	-	(7.31)	(15.46)
				484.2	44.16	3.1	22.67	7.1	-	7.21	15.76
4	$(R,ArC_2H_2N_3S)_2AsCI$	85	140	(466.8)	(41.16)	(3.45)	(18.00)	-	(13.74)	(7.59)	(16.05)
				466.7	41.07	3.85	18.19	-	13.64	6.69	16.55
5	$(R,ArC_2H_2N_3S)_2AsCI$	83	180	(556.8)	(34.51)	(2.53)	(20.12)	(11.49)	(11.53)	(6.37)	(13.45)
				557.2	35.12	2.37	20.75	11.37	10.62	6.82	12.95
6	$(R,ArC_2H_2N_3S)_2AsCI$	85	220	(516.9)	(41.83)	(2.73)	(21.68)	-	(12.41)	(6.86)	(14.50)
				515.9	41.24	3.13	21.87	-	12.31	6.46	15.00

Table1. Physical and Analytical data of (R,ArC₂H₂N₃O)₂AsCl and (R,ArC₂H₂N₃S)₂AsCl complexes

Where R=H, Ar= C_6H_5 in 1 and 4, $C_6H_4NO_2$ in 2 and 5, C_6H_4CN in 3 and 6.

© 2016, IJCRCPS. All Rights Reserved

Synthesis of Complexes

Chloroarsenic (III) benzaldehyde semicarbazones have been synthesized by the reaction of arsenic corresponding trichloride with benzaldehyde semicarbazone in 1:2 molar ratios. The reaction mixture refluxed for 1-2 hours at 40°C, till the color of the reaction mixture underwent a change. Reaction mixture was filtered. The solvent was removed under reduced pressure from the filtrate. The brown colored solid thus obtained washed with alcohol and dried in vacuum to get the purified product. (Analytical data presented in Table1) compounds 1-3 prepared by the same route.

Antimicrobial studies

The antifungal and antibacterial activity of the parent ligand and their complexes was tested in vitro for the growth inhibiting potential against various fungal and bacterial strains using agar disk diffusion technique²¹. Inoculums of bacteria were prepared in nutrient broth and fungi in potato dextrose agar slant. The cultures were inoculated and incubated for 24 hrs. for bacteria and 72 hrs for fungi. For the preparation of seeded agar plate the molten medium was poured in sterile petridish to get a depth of 5mm. The medium was left to solidify and it was seeded with test organism. 5ml sterile water was added to agar slant culture of fungi to get suspension. A sterile cotton swab was dipped in suspension, lightly spread over the solidified medium. The petridish was left for a few minutes. 5mm. discs of whatmann filter paper no.1 were cut and sterilized. The filter paper discs were dipped in the solution of sample after that the disc was removed and left in a sterile petridish to permit the solvent to evaporate.

After 10 minutes the discs were transferred to seeded agar plates. 2 discs were kept on the seeded agar plate. Finally dishes were incubated at 37° C for 24hrs. (for bacteria) and at 30° C for 72hrs. (for fungi), inhibition zones were detected around each disc.

Results and Discussion

General property

All the compounds of benzaldehyde semicarbazones with arsenic are light yellow colored and all the compounds of benzaldehyde thiosemicarbazone with arsenic are brown colored. All the compounds are amorphous and stable at room temperature. These are partial soluble in organic solvents (chloroform, acetone, benzene and ether) and soluble in coordinating solvents (Tetrahydro furan, Dimethyl Formamide and Dimethyl sulphoxide).

S.No.	Compounds	€ (NH₂)	€ (N-N)	€ (C=N)	€ (C-O)	€ (C-S)	€ (As-X)	€ (As-N)
1.	$(R,ArC_2H_2N_3O)_2$ AsCl	Sy-3212 Asy-3424	1065	1560	1668	-	512	430
2.	$(R,ArC_2H_2N_3O)_2AsCl$	Sy-3225 Asy-3420	1063	1566	1670	-	509	428
3.	$(R,ArC_2H_2N_3O)_2AsCI$	Sy-3215 Asy-3422	1058	1558	1675	-	515	425
4.	$(R,ArC_2H_2N_3S)_2AsCI$	Sy-3217 Asy-3423	1067	1565	-	805	355	426
5.	$(R,ArC_2H_2N_3S)_2AsCl$	Sy-3216 Asy-3422	1062	1565	-	803	350	435
6.	$(R,ArC_2H_2N_3S)_2AsCI$	Sy-3218 Asy-3425	1058	1555	-	810	357	426

Table 2. IR spectral data (cm⁻¹) for (R,ArC₂H₂N₃O)₂AsCl and (R,ArC₂H₂N₃S)₂AsCl complexes

Where R=H, Ar= C_6H_5 in 1 and 4, $C_6H_4NO_2$ in 2 and 5, C_6H_4CN in 3 and 6, X=O in 1-3, S in 4-6.

Infrared Spectra

In IR spectra the bands of the –NH group observed at 3000-3195 cm⁻¹ for the ligands, these bands are disappear in the spectra of complexes, which indicates the deprotonation of the –NH group^{22,23}. Two sharp bands are observed at 3212-3225 and 3420-3425 cm⁻¹ for semicarbazone and thiosemicarbazone ligand due to symmetrical and asymmetrical modes of –NH₂ group, remain unchanged indicates the non coordination of the –NH₂ group in coordination²⁴. The strong band observed at 1600-1620 cm⁻¹ range in the free ligands have been assigned to v (C=N) stretching vibrations. On complexation, these bands were observed to lower frequency at 1555-1566 cm⁻¹, thus indicates the coordination of azomethine nitrogen to

metal atom²⁵. A sharp band observed at 1690-1720 cm⁻¹ in semicarbazone mainly due to v (C=O) stretching frequency. These bands are shifted to lower frequency side at 1668-1675 cm⁻¹ in the spectra of the complexes due to coordination of the carbonyl oxygen to the metal atom²⁶. All thiosemicarbazone ligands showed medium bands in the 790-900 cm⁻¹ range ascribed to v (C=S) vibrations, these absorption bands shift to lower frequency at 803-810 cm⁻¹ on the coordination of the thiocarbonyl sulfur to metal ion²⁷ In the spectra of the complexes the presence of new bands in comparison of free ligands in the region of 509-515 cm⁻¹ and 425-435 cm⁻¹ and 350-357 cm⁻¹ these bands show stretching vibrations of v (As-O) and v (As-N) and v (As-S) respectively^{15,22}.

S.No	Compound	¹ H NMR Chemical Shift (uppm)	¹³ C NMR Chemical Shift (u ppm)
		7.23-7.36 (10H, m, Ar-H)	126.7-135.4 (Ar-C)
1.	$(R,ArC_2H_2N_3O)_2AsCI$	8.25 (2H, s, H-C=N)	152.0 (C=N)
		8.57(2H, s, NH ₂)	155.2 (C-O)
		7.55-8.24 (8H, m, Ár-H)	123.7-135.1 (Ar-C)
2.	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	8.33 (2H, s, H-C=N)	151.8 (C=N)
		8.51(2H, s, NH ₂)	154.2 (C-O)
3.	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	7.66-8.12 (8H, m, Ar-H)	129.8-134.8 (Ar-C)
		8.31 (2H, s, H-C=N)	150.3 (C=N)
		8.41(2H, s, NH ₂)	156.5 (C-O)
4.		7.39-7.44 (10H, m, Ar-H)	129.2-135.1 (Ar-C)
	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	8.28 (2H, s, H-C=N)	146.3 (C=N)
		8.56(2H, s, NH ₂)	167.1 (C-S)
5.		7.59-8.26 (8H, m, Ar-H)	124.2-134.5 (Ar-C)
	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	8.29 (2H, s, H-C=N)	147.3 (C=N)
		8.59(2H, s, NH ₂)	167.5 (C-S)
		7.60-8.10 (8H, m, Ār-H)	127.2-135.3 (Ar-C)
6.	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	8.38 (2H, s, H-C=N)	146.0 (C=N)
		8.51(2H, s, NH ₂)	168.1 (C-S)

Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(5): 30-35

Where R=H, Ar= C_6H_5 in1 and 4, $C_6H_4NO_2$ in 2 and 5, C_6H_4CN in 3 and 6. s=singlet, t=triplet, m=multiplate.

Multinuclear NMR spectroscopy

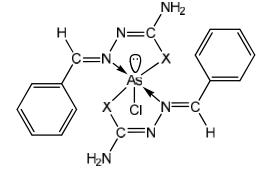
The ¹H NMR spectra of the complexes exhibit aromatic proton signal at 7.23-8.24 ppm. The spectra of ligands exhibit the N-H proton signal in the range of 10.83- 10.90 ppm. The NH signal disappears in the spectra of the metal complexes indicating the chelation of the ligand moiety to arsenic through the nitrogen atom^{11,28}. A sharp singlet is observed for the NH₂ proton at 8.25-8.59 ppm. in complexes. A comparison of spectra of the metal complex with those of the ligands provides very useful information about the mode of bonding. In

semicarbazone complexes the signal for C=N carbon 150.3-152.0 ppm and C-O carbon appears at appears at 154.2-156.5 ppm. but these signals was 153.40 ppm and appears at 159.68 ppm in free ligands respectively this shows involvement N and O in chelation. In thiosemicarbazone the signal for C=N 146.0-147.3 ppm and C-S carbon appears at carbon appears at 167.1-168.1 ppm in complexes but these signals was appears at 152.40 ppm and 176.98 ppm. in free ligands respectively this shows involvement N and S in chelation. Where signal for aromatic carbon at 123.7-135.4 ppm^{29,30}.

Table 4. Antimicrobial activity of (R,ArC2H2N3O)2AsCl and (R,ArC2H2N3S)2AsCl complexes
--

		Zone of inhibitions in m.m.							
			E	Bacteri	а		Fu	ngi	
S.No	Free ligands and their metal complexes	Echerichia coli	Bacillus lichaniformis	Pseudomonas aeruginosa	Klebsiella pneumoniae	Staphylococcus aureus	Penicillium notatum	Aspergillus niger	
1.	$(R,ArC_2H_3N_3O)$	14	15	12	15	13	14	12	
2.	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	18	17	21	19	18	17	14	
3.	$(R,ArC_2H_3N_3O)$	13	12	14	12	11	11	12	
4.	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	16	18	19	18	18	16	18	
5.	$(R,ArC_2H_3N_3O)$	10	11	10	11	12	11	12	
6.	(R,ArC ₂ H ₂ N ₃ O) ₂ AsCl	19	18	17	20	16	20	20	
7.	$(R,ArC_2H_3N_3S)$	16	15	15	16	16	16	16	
8.	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	19	20	22	19	22	20	22	
9.	$(R,ArC_2H_3N_3S)$	15	16	15	17	13	16	15	
10.	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	18	19	19	22	19	21	22	
11.	$(R,ArC_2H_3N_3S)$	17	14	16	18	19	12	17	
12.	(R,ArC ₂ H ₂ N ₃ S) ₂ AsCl	19	19	20	22	22	19	22	
13.	R	23	24	24	24	24	24	25	

Where R=H, Ar= C_6H_5 in1,2,7,8, $C_6H_4NO_2$ in 3,4,9,10, C_6H_4CN in 5,6,11,12, R=Chloramphenicol (antibacterial agent), Terbinafin (antifungal agent).


Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(5): 30-35

Microbial assay

The antimicrobial activity of free ligands and their metal complexes were tested against the bacterial species Staphylococcus aureus, Bacillus lichaniformis, Escherichia coli. Klebsiella pneumoniae, Pseudomonas aeruginosa and the antifungal activity were tested against Aspergillus niger and Penicillium notatum. The results have been compared with known drug chloramphenicol against bacteria and terbinafin against fungi. Semicarbazone and thiosemicarbazone are of considerable interest due to their biological activity. The detected antibacterial, antifungal activity of the organic molecule is usually increased on the complexation. The result reveals that the chelates are more potent than the parent ligands. The complexes of thiosemicarbazone were found to be more effective than semicarbazone complexes and free ligand. The results are shown in table4.

Structure

Present study describes the series of chloroarsenic (III) benzaldehyde semicarbazone, $(R,ArC_2H_2N_3O)_2$ AsCI, benzaldehyde thiosemicarbazone $(R,ArC_2H_2N_3S)_2$ AsCI and their derivatives. The bidentate behavior of these ligands has been confirmed by IR, ¹H NMR and ¹³C NMR data. In these complexes the central arsenic (III) atom appears to acquire the coordination number five and most possible geometry around the arsenic atom is distorted octahedral fig1.

Figure 1: Structure of (R,ArC₂H₂N₃X)₂ AsCI where X=O for semicarbazone and S= thiosemicarbazone

Conclusion

It is very difficult to comment on the molecular structure of these compounds in solid state. However the bidentate behaviour of the ligands in $(R,ArC_2H_2N_3O)$ ₂AsCl and $(R,ArC_2H_2N_3S)$ ₂AsCl has been confirmed by IR, ¹H NMR and ¹³C NMR data. In these complexes the central atom arsenic (III) appears to acquire the coordination five and most plausible geometry around the arsenic atom is distorted octahedral.

Acknowledgments

Authors is thankful to Dr. Usha Shrivastava, Principal, Govt. M.V.M. Ujjain. We are also thankful to CDRI, Lucknow (INDIA) and IIT, Bombay (INDIA), R. D. Gardi Medical College, Ujjain (INDIA), for providing the elemental analysis, spectral analysis, and antimicrobial activity.

References

- 1. Alka Choudhary, Reena Sharma, Meena Nagar, International Research Journal of Pharmacy and Pharmacology,1(6),(2011),172-187.
- 2. S.B. Padhyw, G. B. Kauffman, *Coordination chemistry Review*,63,(**1985**),127-160.

- D.X.West,S.B.Padhye,P.B.Sonawane,R.C.Chikate, Assian Journal of Chemistry Review, 4(1), (1990),125-137.
- A.K.Nandi, S.Choudhri, S.K. Mazumdah,s. Gosh, Journal of chemical society,2(11),(1984),1729-1733.
- 5. M.A.Ali, D.A.Choudhary, M.Naziruddin, *Polyhedron*, 3(5),(**1984**),595-598.
- J.P.Scovil, D.L.Klayman, C.F.Franchino, journal of Medicinal Chemistry. 25(10), (1982), 1261-1264.
- M.E.Hossain, M.N.Alam, J.Begun, Akbar Ali, M. Nazimuddinm, F.E. Smith, R.C. Hynes, *Inorgnic Chim Acta*, 249(2), (1996), 203-213.
- 8. P.Bindu, M.R.P. Kurup, T.R. Satyakeerty, polyhedron,18(3-4),(**1998**),321-331.
- 9. H.Beraleto,Gambino,*Mini Review, Medicianal Chemistry*,4,(**2004**)31-39.
- M.Akbar ali,S.E.Livingstone, D.J.Phillips, *Inorgnic chim.Acta*,7,(**1973**)179.
- 11. M.Akbar ali, S.E. Livingstone, D.J.Phillips, *Inorgnic chim.Acta*,7,(**1973**)531.
- 12. P.R.Shirode, *Indian* Streams Research Journal, 1(5), (**2012**)1-4.
- 13. M. Abdullah, Asiri, Salman A. Khan, *Molecule*, 15(**2010**),4784-4791.
- D.Kovala- Demertzi,t. Varadinova, P.Genova, P. Sauza, M.A.Demertzi, *Bioinorganic Chemistry and Applications*,6(2007).

Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(5): 30-35

- 15. U.N. Tripathi, J. S. solanki, M.S. Ahmad, A.Bhardwaj, T.R.Thapak, *Journal of Coordination Chemistry*, 62(4), (**2009**) 636-644.
- A.Ghuraiya, T.R. Thapak, A. Bhardwaj, T.Kamalpuria, N. Siddiqui, *International Journal of Current Research*,7(6),(**2015**),16854-16858.
- B.S.Furniss, A.J. Hannaford, P.W.G.Smith, A. R.Tatchell, *Text Book of Practical organic Chemistry*, (1989),5th Edi.,395-413.
- W.Hernandez, J. Paz, A. Vaisberg, E.Spodine, R.richter, L.B eyer, *Bioinorganic chemistry and Application* (2009) 2.
- 19. A.I.Vogal, A text book of Quantitative Chemical Analysis, 5th Edi.(**1989**),401,402.
- 20. A. Muller G.g. Bhattacharyya, N Mohan, B. Pfefferkon, *Journal of Inorganic and General Chemistry*,454(1),(**1979**),118-124.
- 21. L.J. Piddock, *Journal of Applied Becteriology*, 68(4),(**1990**),307-318.

- 22. K.Gulten, O.suheyla, B.Gun, K. Navzat, *Turkish Journal of Chemistry*,33(6),(**2009**),857-868.
- R.M. Silverstein, G.C. Bassler, T.C.Morril, Spectroscopic Identification of Orgenic Compounds,4th Edi,Jhon Wiley and Sons,(1981).
- 24. R. Chodhary and Shelly, Research Journal of Chemical Science, 1(5), (2011) 1.
- 25. K. Mahajan, N. Fahmi, R.V. Singh, International Journal of Chemistry, 46 A, (2007) 1221.
- 26. S. kumari, N. k. Sharma, S. kohli, Oriental Journal of Chemistry, 28(2), (2012) 969.
- 27. D. K. Datta, M. Singh , *Transition Metal Chemistry*,19, (1994) 290.
- 28. K. Singh, R.V. Singh, J.P. Tindon, *Synthe. React. Inorg.Met-org. Chem*, 17, (**1987**) 385.
- 29. L.V. Sudha, D.N. Sathyanarayana, s. Manogram, spectrochimica Acta Part A Molecular Spectroscopy, 42(12), (**1986**), 1373-1378.
- 30. I.Wawer, V. Koleva, *Megnetic Resrnance Chemistry*, 31(4),(**1993**),375-379.

Access this Art	icle Online
	Website: www.icrcps.com
	Subject: Chemistry
Quick Response Code	-

How to cite this article:

Tripti Kamalpuria, Megha Chourey, Nameeta Bende, Anish Ghuraiya, Arpan Bhardwaj. (2016). Synthesis, Spectral studies and Antimicrobial activity of Arsenic (III) Benzaldehyde Semicarbazone, Thiosemicarbazone and their Derivatives. Int. J. Curr. Res. Chem. Pharm. Sci. 3(5): 30-35.