INVESTIGATE THE ABILITY OF IRAQI CLAYS THE FLINT AND CAOLINE AS ANTIDOTE FOR SULPHAMETHOXAZOLE DRUGS OVERDOSE

AMMAL ESMAEEL IBRAHIM
Pharmaceutical Chemistry Department, Pharmacy College, AL-Nahrain University, Baghdad, Iraq
*Corresponding Author: dr.ammalalobaidi@yahoo.com

Abstract

Adsorption of excessive amounts of the drug sulphamethoxazole was carried out using flint and caoline Iraqi clays as poison antidote, adsorption processes were shown very efficient within 15 minutes with no back ward redsorption, \(\Delta H \), \(\Delta G \), \(\Delta S \) were also calculated and reported

Keywords: sulphamethoxazole, flint and caoline

Introduction

Adsorption is the adhesion of molecules, atoms, or ions, from a liquid, gas, or dissolved solid (adsorbate) to a surface of a solid materials (adsorbent) consequently the process is happened through altered isotherms such as Freundlich or Langmuir when forming a film of solo layer or multilayer of adsorbate due to different species of adsorbates and adsorbents on basis of Brunauer, Emmett and Teller's model of multilayer adsorption which is random spreading of molecules on the material surface [1, 2].

Clays and activated charcoals were usually used as poisons antidotes since ancient times for their adequate adsorption ability for hydrophobic materials [3, 4] currently they try to use them to detox radiation impurities therefore clays were of the suggested components used to bury the Chernobyl reactor for their recognized capability to diminish the escape of radiation through their defensive barrier [5,6,7].

Clays and activated charcoals antidotes act via many ways such as an passive formation complex , fast-track detoxification , diminish the toxic effects, receptor site competition , receptor site obstruction and toxic effect evade [7].

Newly nanoclays are widely used in present technology to create reinforced polymer nanocomposites for paints, inks, greases, automotive industry, cosmetics formulations, in waste water treatment, medicines such as drug delivery vehicles, and textile industry to compensate the accelerating upward needs for peoples all over the world. The advance of multifunctional nanoparticles for biotechnological and biomedical applications may improve cancer therapy, targeted drug delivery, intravital imaging, DNA transfection, and enzyme [16].

The aim of this work is to investigate the ability of Iraqi clays the flint and caoline as antidote for drug overdose

Experimental Part

(a) Instruments

The instruments used in this study were: uv/vis spectrophotometers UV – VIS Spectrometer RF1501 Shimadzu Japan , Cuvette/Quartz B.S. 3875, Centrifuge BS – 11 Hettich, EBA -20 Germany Thermostated shaker bath BS – 11 Jeio Tech. / South Korea, PH meter (HANA/Romania) HI – 9811 -5, Digital balance Sarturis Lab. L 420 B.W. Germany, Oven / Heraeus (D-6450) Hanau and a muffle furnace (Phonenix).

(b) Materials :

Chemicals: HCl 36% w/w, sp.gr. (1.18) , BDH, England,
were obtained from, Sulphamethoxazole was obtained from the State Enterprise for Drug Industries and Medical Appliances (SDI), Samarra, Iraq. Flint and Kaoline clays: were obtained from the (General Company for Geological Survey and mining), Baghdad, Iraq.

(c) Methodology :

The clays were washed with excessive amounts of demineralized water many times to remove the soluble impurities, dried at 115°C for three hours (constants weight), crushed with crusher machine, sieved by molecular sieves to the grades of 75, 80, 150, 200 and 250 µm then stored dry in sealed plastic containers.

Adsorption experiments were carried out by shaking each clay (0.1 gm of 75 µm particle size) with 10 ml of sulphamethoxazole solution with concentrations 5×10^{-5}, 5×10^{-4}, 5×10^{-3} and 10^{-3} M/L respectively in a thermostatic shaking water bath at 150 rpm.

Series of experiments were carried out to determine the best residence time for adsorption process at from the State Enterprise for Drug Industries and 37.5°C, then to determine the kinetic physical constants such as Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS).

Samples for spectrophotometric analysis were centrifuged for 22 minutes at 5000 rpm, filtered by filter paper no. 42 then centrifuged again to get rid of any suspended particles in order to obtain accurate absorbency readings.

Samples of the clays were ignited at 1100°C with the aid of a muffle furnace for 3 hours to determine the weight loss of each clay.

Results and Discussion

Flint and Kaoline clays proved to be very efficient as antidote for overdose of sulphamethoxazole drug within 15 minutes contact time at 37.5°C and showing no re desorption (reverse reaction) during all the reaction time which last 120 minutes (Fig 1 & 2).

![Fig.-1 Adsorption capacity for flint along contact time.](image1)

![Fig.-2 Adsorption capacity for caoline along contact time.](image2)
Adsorption process for flint and aoline clays as seen by Figures 3 & 4 was going along Freundlich and Küster isotherm (1894) since the relationship of Qe (mg of adsorbate / g of clay) against Ce (mg / L) the equilibrium concentration of the adsorption reaction showing a straight line for both clays according to the following empirical formula (Eq. 3&4) which could be applied for gaseous or solid adsorbates where C is the concentration of the adsorbate, \(\frac{x}{m} \) the mass ratio of adsorbate to adsorbent (Qe), k and n are empirical constants:

\[
\frac{Q_e}{C_e} = k C^{1/n} \quad \text{.... Eq.- 1}
\]

\[
\log Q_e = \log K_f + \frac{1}{n} \log C_e \quad \text{.... Eq. 2}
\]

The empirical constants as seen in table – 1 reveals that adsorption of sulphonmethoxazole depends greatly upon the active sites of the clay surface as Si---O or Al---O as well as their hydrogen bonding formed thereof by clays elemental compositions (Table -2) because the values of \(1/n \) is small therefore the drug concentration does not affect the adsorption rate extensively.

<table>
<thead>
<tr>
<th>Clay type</th>
<th>1/n</th>
<th>K_f</th>
<th>n</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint</td>
<td>0.20825</td>
<td>10.85</td>
<td>4.789</td>
<td>0.972</td>
</tr>
<tr>
<td>caolin</td>
<td>0.2112</td>
<td>10.69</td>
<td>4.735</td>
<td>0.953</td>
</tr>
</tbody>
</table>
Table-2 Elemental compositions of flint and caoline clays

<table>
<thead>
<tr>
<th>Clay</th>
<th>Al₂O₃ %</th>
<th>SiO₂ %</th>
<th>Fe₂O₃ %</th>
<th>MgO</th>
<th>TiO₂ %</th>
<th>K₂O %</th>
<th>CaO %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint **</td>
<td>34</td>
<td>46</td>
<td>1.34</td>
<td>0.77</td>
<td>1.19</td>
<td>0.08</td>
<td>0.6</td>
</tr>
<tr>
<td>caoline**</td>
<td>35.05</td>
<td>48.57</td>
<td>1.34</td>
<td>0.77</td>
<td>1.19</td>
<td>0.08</td>
<td>0.6</td>
</tr>
</tbody>
</table>

** The General Company for Geological Survey and mining, Baghdad, Iraq.

According to Vant Hoff – Arrhenius equation:

\[
\log X_m = \frac{-\Delta H}{2.303 RT} + \frac{\Delta S}{R} \quad \text{Eq. 3}
\]

Enthalpy (\(\Delta H\)) and entropy (\(\Delta S\)) changes could be calculated using (Fig 5 & 6) where:

\(X_m\) is the maximum amount of adsorbate.
\(X_m\) = maximum amount of adsorbate (mg) by one gram of adsorbent.

Gibbs free energy change is also calculated using the following equation at 310.5 K:

\[
G = \Delta H - T \Delta S \quad \text{Eq. 5Δ}
\]

The values of the physical constants are shown in table-3 conclude that the adsorption process occurred spontaneously for the negative values of \(\Delta G\), meanwhile \(\Delta H\) attapulgite is negative for Flint and caoline, the overall free energy proceed the adsorption reaction readily spontaneously.

Fig. - 5 Adsorption capacity of sulphamethoxazole by Flint at different temperature degrees.

Fig. - 6 Adsorption capacity for sulphamethoxazole by caoline at different temperature degrees.
Table- 3 The values of the physical constants

<table>
<thead>
<tr>
<th>Clay type</th>
<th>∆H, KJ/M</th>
<th>∆G, KJ/M</th>
<th>∆S, J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint</td>
<td>-0.383</td>
<td>-5.916</td>
<td>10.8</td>
</tr>
<tr>
<td>caoline</td>
<td>-0.180</td>
<td>-5.918</td>
<td>11.078</td>
</tr>
</tbody>
</table>

The clays were ignited by a muffle furnace at 1100°C for 3 hours therefore the properties of the clays were changed as seen in Table – 4 for the adsorption capacity (Qe) of both clays became lower after ignition due to alteration of the active sites on the surface of the clays because the weight loss due to the destruction and decomposition of organic and inorganic inclusions of the clays.

Table – 4 Effect of clays ignition on their adsorption capacity .

<table>
<thead>
<tr>
<th>Clay</th>
<th>Weight loss %</th>
<th>Qe (mg/g) Before ignition</th>
<th>Qe (mg/g) After ignition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint</td>
<td>13.751</td>
<td>22.866</td>
<td>20.656</td>
</tr>
<tr>
<td>caoline</td>
<td>10</td>
<td>23</td>
<td>20.799</td>
</tr>
</tbody>
</table>

Conclusion

This study revealed that the loading capacity of each clay (Qe) is up to 23 mg/g of adsorbent clay, which is acceptable value but it is worth to increase this ability up to hundreds folds by convert the clays to nanoparticles for surfaces area increase by thousands times fold therefore the adsorbing active sites of the clays which is responsible for attraction of adsorbate molecules and/ or ions are greatly increased.

References

1- Adsorption is present in many natural, physical, biological, and chemical systems, and is widely used in industrial applications. “Glossary”. The Brownfields and Land Revitalization Technology Support Center. Retrieved 2009-12-21.
5- How to Detox Radiation Poisoning, © 2009 E-Marketing Consulting LLC. All Rights Reserved.
7- VV Pillay, JAPI • VOL. 56 • November 2008.
12- Hong Shao, Ning Cao, Jianguang Li, Dawei Wang, Weixue Xu, Journal of Chemical Science and Technology July 2013, Vol. 2 Iss. 3, PP. 128-134.
15- Zhaohui Tong, Water-based suspension of Polymer Nanoclay Composite Prepared via Miniemulsion Polymerization, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology December 2007.